

CIAC case study

SYNTHESIS FLOWCHART

Mesoporous SiO ₂ nanoparticles	Addition of ZnAc (solution in H ₂ O)	Mechanical mix of ZnAc + SiO ₂	Calcination 600 °C (2 h)	ZnO-SiO2
Precursors Silicon oxide nanopowder Zinc anetate diabufcate (liquid)		Impregnation Drying stage		Final material Yield: ~100%
Precursors' ratio		Stove - 60°C		No solid or liquid waste
H2O is used to make a solution of zinc acetate. Its volume is defined by the mass of precursor used in the reaction		More water is added stirring. The volume the total mass	to reach a good used is defined by	

MCNM USE

 ${\rm SiO_2\text{-}ZnO}$ can be utilised in building coatings for photocatalytic NO_{\rm X} decontamination. ZnO has photocatalytic properties and generates ROSs upon exposure to sunlight, water, and oxygen. NO_{\rm X} gases are oxidised to nitrates; nitrates deposit on the surface after the conversion, and are cleared by rain. SiO_2 improves ZnO performance, stability, compatibility, and dispersibility in the construction materials (e.g., mortar).

SiO₂-ZnO

CHARACTERISATION

Extensive characterisation was carried out by partners at CNR-ISTEC, CSIC and UNIVE.

- Average primary particle size (nm) by TEM and shape:17±3 nm; semi-spherical
- Specific surface area, pore volume and porosity:

	Specific surface area (m ² /g) by BET	Pore volume (cm ³ /g) by BET	Porosity
SiO ₂	119.2±0.6	0.170±0.008	mesoporous
SiO ₂ -ZnO	48.7±0.2	0.142±0.007	mesoporous

• Elemental composition by ICP-OES (%): 80% SiO₂; 20 ZnO% (small amount of Al, B, Fe, Na

and Ti based impurities)<u>Tests conducted with</u>

HR-TEM-EDX: signal of Si, Zn and O, suggesting that the SiO₂ NPs are covered by ZnO

 Preliminary dissolution experiments: in different ecotox and tox media, Zn(II) dissolution % from SiO₂-ZnO was always ~2 times higher than for ZnO, excepting for the PSF (pH: 4.5) →possibly due to different geometry

due to different geometry of ZnO alone versus on SiO₂ particles

TESTING and SSbD MATERIAL

Human hazard testing

- SiO₂-ZnO shows no indication of oxidative stress (HWU) or inflammasome activation (RIVM)
- This MCNM indicates a dose-dependent cytotoxicity in three different types of testing (HWU, RIVM, SU); in all of them, SiO₂-ZnO was more cytotoxic than its corresponding concentration of ZnO alone

SSbD material

A new, SSbD version of SiO₂-ZnO (Tier2) was generated with liquid precursors, to reduce the occupational exposure during the production of the MCNM (CNR-ISTEC).

Photocatalytic testing

Pristine (Tier1) and SSbD (Tier2) SiO₂-ZnO were tested on their NO_X photooxidation rate ability at different percentages into the mortar (1-5%). Efficiency was similar for the 1% MCNM samples, but not for the 5% ones \rightarrow

improving the mortar-MCNM mixture and its composition might help increase the photocatalytic efficiency

SYNTHESIS FLOWCHART

MCNM USE

In building materials, nanoparticles can act as hydration nuclei, contributing to the development of cement hydration and to the enhancement of material properties (durability, mechanical, thermal, electrical performance and resistance to conductivity, etc.). However, the agglomeration occurring with nanoparticles compromises their ability to enhance material's properties. NP dispersion can, therefore, be improved through functionalisation.

 ${\rm SiO}_2$ can improve the mechanical resistance of building materials (+20% compressive strength compared to untreated concrete). Its functionalisation with <code>APTES</code>, a silane, improves SiO_2 dispersibility in concrete/mortar

SIO₂-APTES improves the mechanical performance of materials based on cement mortars and concrete:

- Increases the rate of hydration
- Improves its compressive strength acting on the microstructure of the pastes - higher amount of CSH gel generated due to the pozzolanic relationship with Ca(OH)₂, reduction in porosity and therefore improvement in mechanical properties

SiO₂-APTES

CHARACTERISATION

Extensive characterisation was carried out by partners at CNR-ISTEC, CSIC and UNIVE.

Characteristics	SIO2-APTES
Average primary particle size (nm) by TEM	20
Specific surface area (m2/g) by BET	104.7±0.7
Pore volume (cm3/g) by BET	0.58±0.03
Porosity	Mesoporous
Chemical identity by RAMAN	characteristic modes of silica and new modes, mainly at C-H region, have been identified
Chemical identity by DRIFTS after dehydration	the propyl chain of the APTES molecule have been determined but APTES molecules are not fully bonded either with the SiO2 surface or/and with themselves
Thermal stability by TGA	different behaviour among labs and among different batches within the same lab → maybe lack of homogeneity; further investigation is needed

 <u>RAMAN spectroscopy</u>: SiO₂-APTES analysed at 514 nm shows characteristic modes of silica and new modes, mainly at C-H region. Atmospheric N₂ and O₂ are also apparent at 1550 and 2324 cm⁻¹ (CSIC)

• TEM imaging:

TESTING

Human hazard testing

- SiO₂-APTES shows indication of inflammasome activation (RIVM): both MCNM and its SiO₂ component induce IL-1ß release, activating
- the inflammasome • Two cytotoxicity methods conducted (WST-1 and RPD) to assess cell survival show differing results, as they look at different mechanisms of cell death in different cell types

MATERIAL MODELLING

A coarse-grained (CG) model of SiO₂-APTES NPs, with a diameter in the 10-20 nm range is being developed (UNIGE). The current work aims at the validation of the model, which will be based on the reproduction of (i) water contact

angle on a flat SiO₂-APTES surface and on the reproduction of (ii) SiO2-APTES zeta potential, possibly measured within the SUNSHINE consortium

- ❷ @h2020sunshine ∰ www.h2020sunshine
- 🜱 info@h2020sunshine.eu
- h2020 SUNSHINE

